一般三相无刷直流电机是在定子上安装位置传感器来检测转子相对于定子所处的位置,并根据检测到的位置信号来决定电机换相输出。因此需要在电机上安装三个霍尔传感器来检测转子位置,不仅增加了电机工艺的复杂性,而且增加了电机成本和电机故障率,也增加了几根位置传感线到控制器上,给电动机整机安装带来不便。三相无位置传感器无刷直流电动机控制系统不需要在无刷直流电机上安装位置传感器,它检测三相无刷电机的三相电机线上的反电动势,根据此反电动势信号来通过DSP计算出电机转子目前相对于定子的位置,进而决定电机换相输出,因此省去了一般无刷直流电机上的三个霍尔位置传感器,从而减少了电机成本和故障率。
在本文介绍的控制系统中,采用TMS320LF2407A DSP芯片作为控制器。该芯片内部集成了前端采样A/D转换器和后端PWM输出硬件,将DSP的高运算能力与面向电机的高效控制能力集于一体,具有电机控制方面无可比拟的优点。
一、系统的控制原理
1. 无位置传感器无刷直流电动机的工作原理
在直流无刷电动机中,任何时刻三相中只有两相被激励。例如:A相中电流在00~1200和1800~3000期间流动,而在1200~1800和3000~3600期间,A相不通电。每一相的反电动势是梯形的,有两个稳定电压的1200区间,不通电相的反电动势可以被测出,间接得到转子位置。基于转子位置,建立三相逆变桥的功率器件的换向顺序,功率器件被每600有顺序地换向。
2. 反电动势法检测转子位置原理
三相无刷直流电动机在工作时,每相绕组都会产生感应电动势,电动机每转600就需要换相一次,所以在此之前被截断电流的某相绕组的感应电动势要反相,从而通过零点。直流电动机每转一转需要换相6次,所以三相绕组每转一转共有6个过零点,每相两个过零点。当得知某相的过零点的时刻后,将其延迟300就可以得到所需要的换相信号。反电动势法检测转子位置法是利用这一原理来实现位置检测。
用反电动势法检测转子位置的关键是找出过零点时刻。依据基尔霍夫的回路电压定律可以得到以下结果:
任何时刻电动机三相绕组之间电压矢量和为0,即 VAB+VCA+VBC=0。
即 (VAN-VNB)+(VCN-VNA)+(VBN-VNC)=0
即 [(VA-VN)-(VN-VB)]+[(VC-VN)-(VN-VA)]+[(VB-VN)-(VN-VC)]=0
即VA+VB+VC=3VN (1)
即任何时刻电动机三相绕组的端点电位之和等于3倍中性点的电位。对于截断电流的某一相X,电流为0,截断电流前的端点电位为VX,根据反电动势的定义,该相的反电动势EX:
EX=-K(VX-VN)(2)
K为常数,其大小取决于电动机的电感量和电流的变化率。所以,可以根据(VX-VN)得到反电动势的过零点,然后用软件移相得到换相时刻并使逆变桥以合适的时序工作,从而保证电动机的正常运行。
二、系统的硬件组成
基于TMS320LF2407A的无刷直流电动机控制系统中,采用TMS320LF2407A作为控制器,处理采集到的数据和发送控制命令,检测转子的转动位置,并根据转子的位置发出相应的控制字来改变PWM信号的当前值,从而改变直流电机驱动电路中功率管的导通顺序,实现对电动机转速和转动方向的控制。其端口IOPC口用于按键命令, IOPE口用于点亮相关的信号指示灯。PWM信号通过驱动放大后,加在开关阵列。在系统的运行过程中,驱动保护电路会检测当前系统的运行状态。如果系统中出现过流或欠压情况,会启动DSP控制器的电源驱动保护,实现控制系统的DSP芯片和驱动电路的保护。
功率驱动电路
采用三相全控桥式的控制方式。功率MOSFET管采用IRFP054N,并采用IR2130作为全控桥的驱动电路。
IR2130芯片可同时控制六个大功率管的导通和关断顺序,通过输出HO1,2,3分别控制三相全桥驱动电路的上半桥V1、V3、V5的导通关断,而IR2130的输出LO1,2,3分别控制三相全桥驱动电路的下半桥V2、V4、V6的导通关断,从而达到控制电机转速和正反转的目的。IR2130芯片内部有电流比较电路,可以进行电机比较电流的设定。设定值可以作为软件保护电路的参考值,这样可以使电路能够适用于对不同功率的电机的控制。
转子位置检测和电流检测电路
转子位置检测采用反电动势检测的无传感器控制,为了计算中性点电压VN,必须知道三个绕组端对地电压(电位),这可由TMS320LF2407内的ADC来实现,电流检测采用分流电阻来实现。分流电阻安装在功率驱动桥的下端,与功放板地线之间,选定的阻值具有功放板达到允许的最大电流时,激活过流保护功能,这些信号在模数转换之前都要通过放大电路放大一定的倍数,以覆盖整个模数转换范围。